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Recent applications of the Poisson–Boltzmann theory
include computations of electrostatic forces on solvatedWe evaluate two different ways of calculating the contribution of

the electrostatic stress to the free energy integral based on Sharp molecules [8], solvation energies for charged rods in the
and Hönig’s method within the finite difference nonlinear Poisson– presence of salt [9], solvation of vesicles of ionic amphi-
Boltzmann equation method with the University of Houston philes [10], interaction energies and forces for colloidal
Brownian Dynamics program. We show that only one of these ap-

particles [11, 12], membrane-electrolyte systems [13] andproaches gives consistent results in the limit of zero ionic concentra-
numerous others. It has been considered a reference fortion for interactions of the order of magnitude of the hydrogen

bond. The results are compared with results from both the linear other approximate methods [14, 15] and has been parame-
Poisson–Boltzmann equation and the Debye–Hückel theory, for ion terized to give results in qualitative agreement with experi-
concentrations within the limits of validity of these approxi- mental quantities for a range of compounds while the free-
mate methods. We demonstrate this by application to DNA

energy perturbation technique has proven to be both moremolecules. Q 1997 Academic Press

costly and problematic [16], although potentially exact.
Comparisons with grand canonical Monte Carlo methods
and the hyper-netted chain formalism have shown that1. INTRODUCTION
PBE retains its semiquantitative utility even in the range

The nonlinear Poisson–Boltzmann equation (NLPBE) of moderate to high concentrations of bulk salt [17].
[1] can be derived from the minimization of an ansatz In this paper, we focus on the calculation of the approxi-
functional. Reiner and Radke proposed that this functional mate electrostatic free energy of interaction (EFEI) arising
represents the electrostatic free energy and applied it in from hydrogen bonds between DNA strands. Indeed, it is
the study of a system of interacting double layers [2]. Inde- well known that the specific base pairing in nucleic acids
pendently, Sharp and Hönig used the variational method is a consequence of recognition through hydrogen bonds.
to calculate the electrostatic energy of a biomolecule in a While single strands can adopt a helical conformation in
continuum solvent of specified dielectric behavior [3]. Nu- saline solution due to stacking effects among adjacent
merical agreement between their method and the charging bases, hydrogen bonds are responsible for the specificity
integral method has been shown by Sharp and Hönig [3]. and impart the stability of the double helix through the
Recently, Zhou has given an analytical proof of the equiva- correct pairing of the bases. The hydrogen bond can be
lence of Sharp’s energy-density integral and the charging represented in a classical force field as a combination of
integral [4]. The former is much more efficient to evaluate. electrostatic and van der Waals forces.
We demonstrate here that there are two different ways While thermodynamic perturbation theory methods
of computing the energy-density integral, one of which with a fully atomic representation of the solvent require
appears to be more accurate for grid sizes typically used. extensive and costly simulations, the Poisson–Boltzmann

Due to recent improvements in numerical algorithms methods present an inexpensive qualitative method of
and computer performance, Poisson–Boltzmann theories evaluating the approximate EFEI (DG(f)) between
and their finite-difference implementations have become DNA strands.
widely used in computational biophysics and computa- The potential biological and medical interest of the work
tional biochemistry. The main advantage of these methods we present here resides in gaining insight about new bind-
resides in their speed, whereas the more detailed and argu- ing motifs which can be aimed at inhibiting the transcrip-
ably more accurate perturbation methods, which make use tion process [18]. Indeed, much experimental work lately
of explicit solvents, require lengthy molecular dynamics concentrates on therapeutic intervention at the level of the

nucleic acid (for reviews in this area of work see [19, 20]).simulations or solutions to nonlinear integral equations [5].
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Numerous drugs and chemotherapeutics that bind to nu- For Eq. (1) to be elliptic [25], the function «(x) needs
to be greater than a fixed positive constant at almost everycleic acids are already available on the market and research

efforts are directed towards the improvement of their af- point x, as well as essentially bounded. However, there is
no need for «(x) to be continuous, and in many importantfinity for the genetic material [21, 22]. However, none of

these drugs show the specificity necessary for targetting a physical applications it is not. We also assume that the
function f0 can be extended to all of the domain as aparticular gene. The high specificity of base pairing in nu-

cleic acids has led to the idea of engineering a second RNA function with square-integrable gradient, i.e., as a member
of the Sobolev space H1(V) [25]. We assume that thestrand (in translation inhibition) or a third DNA strand

(transcription inhibition) that would specifically bind to a nonlinear function N(f) is the derivative of a function
M(f) [ C 2(R1): N(f) 5 ­M(f)/­f.segment of the target mRNA or DNA. To ensure specific-

ity in the context of the size of the human genome these A finite difference treatment of the problem in Eq. (1)
for an arbitrary geometry can be problematic, especiallycomplementary strands should be at least 17 base-pairs

long [23]. The average DGel per base pair in a double when «(x) is discontinuous. However, the variational for-
mulation is quite simple. Definestranded DNA is around 0.6–0.7 kcal/mol/base pair for a

typical T ? A pair [24]. It is therefore important to assess the
accuracy of energy evaluations when using finite difference

a(f, v) :5 E
V
O3
i51

«(x)
­f

­xi

­v
­xi

dx (2)NLPBE to investigate interactions with this magnitude. In
biological environments, these energies are of the order
of kbT, where kb is Boltzmann constant and T is the temper- and define the space V , H1(V) of functions v (for which
ature. the form a(v, v) is finite) which satisfy the homogeneous

This paper is organized as follows. We give the theoreti- essential boundary conditions (v(x) 5 0, x [ ­V) of the
cal basis for our numerical arguments, then in a first exam- problem on ­V as described in [25]. Also, we use the
ple of calculation we try to determine whether a finite standard L2 inner-product
difference method applied to the Poisson–Boltzmann
equation gives reliable results in the limit of zero ionic

(g, v) :5 E
V

f(x)v(x) dx. (3)concentration for a very simple system and how the grid
spacing and grid size affect the results. We next compare
the finite difference PBE results to calculations within the Using these ingredients, Eq. (1) can be posed as follows.
Debye–Hückel asymptotic limit. Indeed, the Debye– Find f(x) such that f(x) 2 f0(x) [ V and
Hückel theory is known for giving exact results in the limit
of infinite dilution. Since the Debye–Hückel theory can a(f, v) 1 (N(f), v) 5 (r, v) ;v [ V. (4)
be derived from the Poisson–Boltzmann theory, the results
should differ only by numerical errors. A third example One can show that a solution of Eq. (4) is a solution of
will show how the FDPBE performs on more complex, the initial problem in Eq. (1), if, e.g., f [ H 2(V) [25]. In
highly charged molecules such as duplex DNA. We will any case, (4) provides a more general formulation of the
show how the two numerical methods compare and how equation (1) which allows the definition of solutions of
they compare to experimental data with established param- physical interest even when (as will be the case of interest
eters. here) « is discontinuous, and hence not all of derivatives

in (1) are defined.2. METHODS
The quantity

In the following we present general aspects of the discret-
ization methods applied to the NLPBE and two ways the DG(f) 5 (r, f) 2

1
2

a(f, f) 2 E
V

M(f) dx (5)
electrostatic free energy can be integrated.

2.1. A Model Problem and Its Variational Formulation is frequently physically meaningful and often related to
the energy of the system. One can show that the solutionWe consider a scalar nonlinear elliptic 3D problem of
of Eq. (4) minimizes the energy functional (5) in the spacethe form
of functions hf: f 2 f0 [ Vj, i.e., the variation

2O3
i51

­

­xi
S«(x)

­f

­xi
D1 N(f) 5 r(x), x [ V,

(1)
d
ds

DG(f 1 sv)U
s50

5 0 ;v [ V. (6)
f 5 f0(x), x [ ­V,

where «, N, r, and f0 are given functions. The energy functional in Eq. (5) can be computed using
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the definitions (2) and (3) or, at its minimum, using the It is interesting to notice that the quantity (r, fh), as
well as other terms in Eq. (12) have extra approximationdefining property (4) for v 5 f 2 f0 :
accuracy in comparison with the apparent difference be-
tween a(fh , fh) and a(f, f). For example, if Vh containsa(f, f) 5 (r, f 2 f0) 1 a(f, f0) 2 (N(f), f 2 f0). (7)
piecewise linear functions, then if 2 fhi2 is of order h2

(if « is smooth), whereas its derivatives can be no betterIntegrating the term a(f, f0) by parts and using Eq. (1)
we can rewrite than order h. Here,

a(f, f) 5 (r, f) 2 (N(f), f) 1 E
­V

«(x)
­f

­n
f0 dx, (8)

ici2 5 SE
V

c(x)2 dxD1/2

(13)

where n is the outward unit normal vector to the boundary
­V. So, the minimal value of the energy functional in Eq. denotes the usual L2(V) norm for any square-integrable
(5) can be evaluated by function c. Thus,

DG(f) 5
1
2

(r, f) 2 E
V

M(f) dx

(9)
u(r, fh) 2 (r, f)u # Cfiri2h2, (14)

assuming f is sufficiently smooth. Similarly, one can show1
1
2

(N(f), f) 1
1
2
E

­V
«(x)

­f

­n
f0 dx.

that

That is, we replace the integral a(f, f), of a derivative
quantity involving a coefficient « with possible discontinu-

u(N(fh), fh) 2 (N(f), f)u 1 UE
V

M(fh) dx

(15)
ities, by terms which require no derivatives and do not
involve «, except for the boundary integral e

­V
«(x)(­f/

2 E
V

M(f) dxU# Cf h2,­n)f0 dx. This term is quite small in typical biological
applications and, moreover, the boundary can be chosen
so that « and ­f/­n are smooth there. The last term can
be computed accurately for smooth «(x), f0 and ­f/­n on assuming M(f) [ C 2(R1).
­V, in contrast with a(f, f). Since all of these terms are evidently of order h2, whereas

the derivative error is only of order h, it might seem obvious
2.2. Discretization of the Model Problem that (12) is more accurate. However, it turns out to be

more subtle than that. The same order h2 estimate for a(fh ,The finite element method for approximating Eq. (1) is
fh) 2 a(f, f) can be derived as follows. For simplicity, letstraightforward to derive once we pick a space Vh , V
us assume that f0 ; 0. Then fh [ Vh and choosing v 5of approximating functions. With this, we define a finite
fh in (10) shows that (11) and (12) are identical. However,element approximation fh by adding subscripts h to Eq.
the difficulty with (11) is computing the exact integrals(4). Thus we want to find fh such that fh 2 f0 [ Vh and
when « is complicated, e.g., discontinuous.

a(fh , v) 1 (N(fh), v) 5 (r, v) ;v [ Vh . (10)
2.3. Finite Difference Approximation

The energy functional DG(fh) can be approximated by In the case that the coefficient «(x) is constant and the
the above two approaches. It can be computed using the mesh is regular, Eq. (10) is identical to standard finite
definitions in Eq. (5): difference equations on a seven-point stencil, provided that

suitable quadrature is used for the right-hand side. For
example, suppose Vh consists of continuous piecewise tri-DG(fh) 5 (r, fh) 2

1
2

a(fh , fh) 2 E
V

M(fh) dx, (11)
linear functions on a tensor-product mesh in three dimen-
sions, or a corresponding tetrahedral subdivision of such

or using the (potentially more accurate) equation (9): a mesh with continuous piecewise linear functions. Let the
L2 inner-product be approximated by the trapezoidal rule,
which we denote by (f, v)h . Now let fh 2 f0 [ Vh beDG(fh) 5

1
2

(r, fh) 2 E
V

M(fh) dx

(12) such that

1
1
2

(N(fh), fh) 1
1
2
E

­V
«(x)

­fh

­n
f0 dx.

a(fh , v) 1 (N(fh), v)h 5 (r, v)h ;v [ Vh . (16)
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The variational problem in Eq. (16) is identical to a stan- where V is the volume over which the integration is carried
out. In what follows, we will refer to the above integral asdard finite difference method [25]. In the case that f0 ; 0,
NLPBE1. It clearly is the same as (11) for our model

DG(fh) :5 (r, fh)h 2 Asa(fh , fh) 2 (1, M(fh))h
(17)

problem.
In the previous subsection we have shown that there are

5 As(r, fh)h 2 (1, M(fh))h 1 As(N(fh), fh)h ,
reasons to believe that the finite difference computation
of the square gradient is prone to extreme numerical errors.where ‘‘1’’ denotes the function that is identically one.
Thus, the second way (9) of computing DG(f) may be ofThat is, we are indicating that the same quadrature rule
significant interest. In this case, it takes the formis used to evaluate e

V
M(fh) dx as for the inner-products.

Thus we conclude that the two methods for computing DG
are essentially identical for constant «(x). DG(f) 5 E

V
Hr f(x)f

2
2 2kbTcb Fcosh S fe

kbTD2 1G
(20)In the case that the coefficient «(x) is discontinuous, the

finite element solution cannot be computed exactly unless
1 fecb sinh S fe

kbTDJ dx 1
1
2
E

­V
«(x)

­f

­n
f0 dx.the discontinuities of «(x) fall on element boundaries. Simi-

larly, a finite difference approximation will likely no longer
satisfy a relationship like Eq. (17). In this case, using ex- In the following we shall refer to the integral in Eq. (20)
pression (9) may be much more accurate as an approxima- as NLPBE2.
tion to DG(f) than computing the energy functional di- Equation (20) converges to
rectly from Eq. (5).

DG(f) 5
1
2
E

V
r f(x)f dx 1

1
2
E

­V
«(x)

­f

­n
f0 dx (21)2.4. Application to Electrostatic Free Energy Calculations

Let us present the two different forms of the electrostatic in the limit cb R 0. The last integral on the right-hand side
free energy of interaction (EFEI) integral for the nonlinear of the equation vanishes for large domains. In the following
Poisson–Boltzmann problem. For the sake of clarity we we shall refer to integral in Eq. (21) as LPBE.
will present the basic physical formulas. A more complete
discussion of these equations and their implementation can 3. RESULTS
be found in references [1, 3].

3.1. Two Point Charges in a Dielectric ContinuumThe nonlinear Poisson–Boltzmann equation (NLPBE)
can be written in the following nondimensional form for

We first consider the simplest asymptotic limit. Ac-
a univalent electrolyte solution:

cording to Eq. (20), in the limits of zero bulk salt concentra-
tion, the energies must be the same, regardless of the
method used to derive the potentials (NLPBE or LPBE).2O3

i51

­

­xi
S«(x)

­f

­xi
D1 2ecb sinh S ef

kbTD5 r f(x), x [ V,
When the free energy of interaction for two point charges
at a distance d in a continuum dielectric is calculated, inf 5 f0(x), x [ ­V,
the absence of any mobile ions, the result should trivially

(18) equal the value predicted by Coulomb’s law,

where «(x) is the dielectric constant (permittivity), r f(x) qiqj

4f«0«rd
, (22)is the charge density, cb is the bulk concentration of ions

in the solvent (cb 5 o ci), kb is the Boltzmann constant, e
where «0 and «r are the electric permittivity and the relativeis the electron charge constant, T is the temperature, and
permittivity, and qi and qj are two point charges.f(x) is the electrostatic potential. Notice that the NLPBE

problem (18) can be derived from the model problem (1)
by choosing M(f) 5 2kbTcb cosh (ef/kbT).

TABLE I
The solution of Eq. (18) minimizes the free-energy func-

EFEI for Two Point Charges at 4 Å Distance from Eachtional. The energy integral, as used in the standard releases
Other in a Continuum of Relative Permittivity «r 5 80of the popular codes UHBD and Delphi has the form [1, 3]

Method DGel (kcal/mol)

DG(f) 5 E
V
Hr f(x)f 2 2KbTcb Fcosh S fe

kbTD2 1G
(19)

LPBE 1.0383
NLPBE1 1.8328
NLPBE2 1.0383

2
1
2 O

3

i51
«(x)

­f

­xi

­f

­xi
J dx, Coulomb 1.0375
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FIG. 1. The electrostatic free energy of interaction as a function of the grid size. The LPBE and NLPBE2 methods provide the same results.
NLPBE1 provides results dependent on the grid size.

We considered two point charges at a distance of 4 Å of the energy is carried out, errors during the nonlinear
iterations cannot be the cause.in a continuum dielectric of permittivity «r 5 80, of rele-

vance to aqueous solutions. The grid spacing was set to When the grid spacing is reduced, the agreement be-
tween the finite difference method and Coulomb’s equa-0.2 Å while the cubic grid side’s size was varied from 30

to 60 points per side. An additional calculation was run tion gets better, as expected, and, for a 160 3 160 3 160
box with a 0.05 Å grid spacing, the results are identical upwith a 110-point grid size. The boundary potential is calcu-

lated as the sum of the potential created by independent to five significant figures (due to the large amount of mem-
ory required this calculation has been done on 32 nodesDH spheres [7]. The electrostatic interactions are formally

long-ranged interactions and the potential will not drop to of a KSR-1).
Figure 1 shows the dependence of the free energy ofzero at the box boundaries unless an infinite box size is

used or the boundary conditions are set to zero in a finite interaction with the grid size. NLPBE2 and LPBE gave
exactly the same results and proved to be very stablebox. The latter case corresponds to forcing the system’s

neurality by introducing excess counterions in the box. within the range of box sizes considered. NLPBE1 results
appear to be strongly dependent on the size of the box,The results are further affected by the nonlinearity of the

system. Our tests have shown (results not given here) that which confirms our hypothesis from Section 2, namely,
that this way of integration leads to increased numeri-forcing zero boundary conditions leads to results inconsis-

tent with the analytical results. cal errors.
In an attempt to understand the influence of the twoTable I shows the results as calculated analytically via

Coulomb’s law, using LPBE and NLPBE, and a grid size methods of summation on the results outside of the limiting
case, we have calculated the energies of interaction forof 40 3 40 3 40. In the latter case the free energy was

calculated using both integrals NLPBE1 and NLPBE2. To concentrations of bulk ions going from 0 to 2000 mM. Fig-
ure 2 shows the variation of the EFEI with the ionicaccount for numerical errors, the system was translated by

0.01 Å in the x, y, and z directions simultaneously, in 20 strength, as calculated with LPBE, NLPBE1, and
NLPBE2. While LPBE and NLPBE2 provide very goodsuccessive steps and the results averaged. The results show

an error of about 80% when the integration is carried out agreement with each other at low ionic strengths, at higher
concentrations in bulk ions, the two methods diverge. Thiswith NLPBE1, while energies calculated from LPBE and

with NLPBE2 are identical. Since the only difference be- is a consequence of the higher terms in the development
of the charge density (see, for example, [26]) compared totween the two methods consists in the way the integration
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FIG. 2. The electrostatic free energy of interaction as a function of the ionic strength. The concentration in bulk ions was varied from cb 5

0.0 M to 2.0 M.

the linear equation (18). Intuitively, the second method of which, at very small concentrations, should provide results
in reasonable agreement with experimental data and, im-summation (NLPBE2) provides a better behavior of the

curve since we would expect the interaction energies be- plicitly, with the DH theory.
The second method of summation shows a bettertween our particles to vanish at high ionic strengths. How-

ever, PB theories are well known to have a number of agreement with both DH theory and LPBE. For higher
concentrations in bulk salt, the lack of analytical resultsdeficiencies as a theory of ionic solutions due to lack of

explicit intramolecular correlations. Our purpose here is makes it difficult to draw numerical conclusions without
resorting to extremely costly explicit simulations.simply to consider the numerical aspects.

3.3. EFEI for Watson–Crick Base Pairs3.2. One Sphere in a Continuum Dielectric

The NLPBE has been recently used in a variety of calcu-The Debye–Hückel theory provides an asymptotic solu-
lations on molecules of biological interest, e.g., computa-tion to the problem (18) for a spherical geometry. The
tion of electrostatic energies of hydrated molecules [27],results of the Debye–Hückel theory are formally exact in

the limit of low concentration and are accepted to be in
good agreement with experiments for bulk salt concentra-
tions of less than 5 mM [26]. Table II shows the free energy TABLE II
of solvation for a sphere of radius 2 Å in a continuum

EFEI of Solvation for a Sphere of 2 Å Radius in a Continuumdielectric of «r 5 80 and a concentration of 5 mM as calcu-
Dielectric of Realtive Permittivity «r 5 80 and a Bulk Ioniclated from DH theory, LPBE and NLPBE with the two
Strength of cb 5 5 mM

methods of summation discussed in the previous section.
The center of the sphere was translated by 0.01 Å in the Method DG(f)(kcal/mol)
x, y, and z directions simultaneously and the results aver-

Debye-Hückel 20.0456aged to account for numerical errors. Of course, being
LPBE 20.0443derived within the LPBE, the Debye–Hückel theory gives
NLPBE1 20.0904

results in good agreement with the first one, the differences NLPBE2 20.0511
possibly being due to numerical imprecisions. This type of

Note. The grid spacing was 0.2 Å and the grid size 60 3 60 3 60.calculation is more relevant for the NLPBE methods
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FIG. 3. The four DNA systems (results shown in Table III) with atoms represented as spheres of low dielectric permittivity in a continuum of
high dielectric permittivity. From top left, counterclockwise: a T ? A base pair viewed from above and side views of two, three, respectively, 10
parallel T ? A planes.

interaction energies for protein-DNA complexes [28], sol- is widely acknowledged that hydrogen bonds are mostly
electrostatic in their nature. It is therefore of interest to bevation free energies [29, 30].

One of the most challenging problems in biophysics con- able to precisely and accurately evaluate the EFEI between
DNA bases with the PB equation. Direct simulation ofsists in understanding the energetics underlying the binding

of DNA strands. This would, for instance, permit predic- free energies would be 104–105 times more computationally
demanding than FDPB.tion of binding energies between drugs and the genetic

material. It is well known that single DNA strands tend It is known that the finer the grid spacing, the better
the results provided by finite difference methods, untilto adopt a stacked conformation in solution. This tendency

(due to the hydrophobic nature of the bases) is believed machine precision is reached. This implicitly limits the size
of the system to be considered. We will restrict ourselvesto be at least in part at the origin of the three-dimensional

structure of the genetic material. However, the specificity here to a comparison between the results obtained with
LPBE and the two methods of summation from NLPBEof base pairing is a consequence of the hydrogen bonds

established between the bases in different strands and it for a Watson–Crick T ? A base pair. The DNA systems
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TABLE III tude of the hydrogen bond, our results suggest that careful
consideration should be paid to both the mode of summa-EFEI in kcal/mol for a Watson–Crick T ? A Base Pair in a
tion and the grid spacing. The only way to assess the cor-Continuum Dielectric of Relative Permittivity «r 5 78 and Ionic
rectness of our calculations is to perform calculations inStrength cb 5 0 mM and cb 5 200 mM
limiting conditions for which analytical asymptotic results

System Method cb 5 0 mM cb 5 200 mM are available. For low salt concentrations, the energy inte-
grals corresponding to NLPBE and LPBE should be in

1-plane NLPBE1 21.1692 6 0.0980 21.5469 6 0.0984
reasonable agreement with each other and with the energ-NLPBE2 21.3388 6 0.0984 21.5943 6 0.0984
ies calculated within the Debye–Hückel theory. Failure to

2-planes NLPBE1 21.1960 6 0.1466 22.6777 6 0.1472
do so indicates problems in the numerical algorithms orNLPBE2 21.8710 6 0.1470 22.8603 6 0.1472
inadequate methods.

3-planes NLPBE1 20.3418 6 0.2394 23.7129 6 0.2403 The energy integral NLPBE2 seems to produce more
NLPBE2 21.8719 6 0.2403 24.1813 6 0.2403

reliable results than the corresponding integration for
10-planes NLPBE1 29.0022 6 0.4721 26.0000 6 0.4585 LPBE, when considering hydrated molecules in solutions

NLPBE2 15.6019 6 0.4510 212.5920 6 0.4541
with a slightly higher concentration of bulk salt (see Fig.Expt* 28.8 6 0.5
2). However, it is well known that use of the NLPBE at

Note. The experimental value for a double stranded T · A decamer is some point contradicts physical laws [26, 35–38] due to
from [24]. the lack of molecular correlations. Our models were within

the generally accepted range of applicability of the method.
For larger molecules, such as DNA helices, a quick ex-(see Fig. 3) were built and oriented into a classic B confor-

trapolation can be made. If we admit that a single DNAmation [31] with the Quanta molecular modeling pack-
strand in its helical form (B or A) can be represented asage [32].
a cylinder with the given amount of negative charges, theThe dielectric permittivity of water was set to 78 while
same cylinder can also contain, within a good approxima-the interior of the molecules had a relative permittivity of
tion, both strands (the initial and its complement). The2 to account for the fluctuations of the molecular dipoles.
potential created by the cylinder is twice as high as inGrid points near the boundary were assigned intermediate
the first instance, due to the presence of twice as manyvalues [7, 33]. The atomic charges and Van der Waals radii
phosphate groups as in the first case.were those from version 22.0 of CHARMM [32]. The WC

The Poisson–Boltzmann theory assumes that the excessbase pair was centered in a mesh of 110 3 110 3 110. The
of bulk salt concentration around the molecule is an expo-grid spacing was set to 0.35 Å. The boundary potentials
nential function of the potential at the given point. A roughwere calculated as sums of potentials from independent
estimate of the difference in energy between the doublespheres (the flag option 2 within UHBD) [7]. To account
stranded state and the separated strands givesfor the effects of different relative positions of the mole-

cules with respect to the grid, the WC base pairs were
rotated by 808, in increments of 108, around each cartesian
axis. The average values with the respective variances are DDG(f) 5 E

V
2fecb(e2f 2 ef) dx. (23)

given in Table III.
We should emphasize the important differences in en-

ergy between the two methods for the systems in a zero This is an increasing function of f and, at high potentials
ionic strength environment. In particular, the difference (highly charged small molecules), the difference between
between two and three planes breaks the trend and shows the third terms of the energy-density integral (see Eq. (20))
considerable discrepancy between the two types of meth- will overshoot the difference between the electrostatic
ods. At 200 mM ionic strength, the two methods give closer terms. In our examples, the fast increase of the interaction
results. However, when the size of the system (and there- energies with the size of the system can be clearly seen in
fore the charge) is increased, the results of the two methods Table III.
differ noticeably. These last considerations show the limits of application

Further work on more sophisticated systems such as of the NLPBE while, as we have seen, the LPBE has its
triplex DNA and drug-DNA complexes are in progress and well-known shortcomings for high concentrations of bulk
should provide us with more insights on the best method to ions. A high ionic strength environment and/or systems
use for biomolecules. with low charge density seem to provide the optimum

conditions to apply the NLPBE as it has been pointed out4. DISCUSSION
in early works on the subject [3]. The key to achieving
better accuracy is using methods of controllable precisionFor accurate calculations with finite difference methods

on systems with interaction energies of the order of magni- like the simplified integral method, NLPBE2.
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